博客
关于我
数据结构 第六章 图-1
阅读量:355 次
发布时间:2019-03-04

本文共 2755 字,大约阅读时间需要 9 分钟。

图论是计算机科学中的一个重要分支,涉及图的结构、性质及其应用。以下是图论的一些基本概念和相关内容的详细阐述。

图的基本概念

图是由顶点和边组成的数据结构,其中:

  • 顶点(Vertex):图中元素的基本单元,通常用V表示顶点集合。
  • 边(Edge):连接两个顶点的关系,通常用E表示边集合。边可以是无向的,也可以是有向的。

邻接关系

  • 两个顶点若直接连接,则称为邻接。例如,边e=(u, v)意味着顶点u和v是邻接的。
  • 邻接关系是图的基本性质,决定了图的结构和特性。

关联关系

  • 顶点与其连接的边的关系称为关联关系。每个顶点可以关联多条边,反之亦然。

入度与出度

  • 入度(In-Degree):以某顶点为终止点的边的数量。
  • 出度(Out-Degree):以某顶点为起始点的边的数量。
  • 入度和出度是顶点的度量指标,常用于分析图的结构和特性。

图的类型

  • 无向图(Undirected Graph):所有边都是无向的,边(u, v)与边(v, u)相同。
  • 有向图(Directed Graph):所有边都是有向的,边(u, v)与边(v, u)不同。
  • 混合图(Mixed Graph):图中既有无向边也有有向边。
  • 路径与通路

    • 路径(Path):由顶点和边交替组成的序列,例如π = (v0, e1, v1, e2, ..., em, vm),其中ei连接顶点Vi-1和Vi。
    • 通路(Trail):路径中不重复的边,通路的长度是边的数量。
    • 简单路径(Simple Path):路径中不重复的顶点。
    • 环路(Cycle):起止顶点相同的通路,环路长度≥1。
    • 欧拉环路(Eulerian Circuit):每条边恰好被经过一次的环路。
    • 哈密顿环路(Hamiltonian Circuit):每个顶点恰好被访问一次的环路。
    • 自环(Self-Loop):连接同一顶点的边。

    带权网络

    • 带权网络赋予每条边一个权重,常用于表示边的权重或成本。
    • 带权网络的最短路径问题可以通过Dijkstra算法或其他算法求解。

    图的复杂度

    • 图的复杂度通常用顶点数n和边数e表示,常用n + e来度量。

    图模板类

    以下是一个通用的Graph模板类定义,适用于各种图的操作:

    template
    class Graph {private: // 顶点操作 void reset() { // 初始化顶点状态、时间标签等 for (int i = 0; i < n; ++i) { status(i) = UNDISCOVERED; dTime(i) = fTime(i) = -1; parent(i) = -1; priority(i) = INT_MAX; } } void BFS(int start, int& component) { // 广度优先搜索算法 } void DFS(int start, int& component) { // 深度优先搜索算法 } void BCC(int start, int& component, Stack
    * stack) { // 基于DFS的双连通分量分解算法 } bool TSort(int start, int& component, Stack
    * stack) { // 拓扑排序算法 } template
    void PFS(int start, PU priority_queue) { // 优先级搜索框架 }public: int n; // 顶点总数 virtual int insert(Tv, const ...) = 0; virtual Tv remove(int) = 0; virtual Tv& vertex(int) = 0; virtual int inDegree(int) = 0; virtual int outDegree(int) = 0; virtual int firstNbr(int) = 0; virtual int nextNbr(int, int) = 0; virtual VStatus& status(int) = 0; virtual int* dTime(int) = 0; virtual int* fTime(int) = 0; virtual int* parent(int) = 0; virtual int* priority(int) = 0; int e; // 边总数 virtual bool exists(int, int) = 0; virtual void insert(Te, int, int, int) = 0; virtual Te remove(int, int) = 0; virtual EType type(int, int) = 0; virtual Te& edge(int, int) = 0; virtual int* weight(int, int) = 0; // 算法 void bfs() { // 广度优先搜索算法 } void dfs() { // 深度优先搜索算法 } void bcc() { // 基于DFS的双连通分量分解算法 } Stack
    * tSort() { // 拓扑排序算法 } void prim() { // 最小支撑树Prim算法 } void dijkstra() { // 最短路径Dijkstra算法 } template
    void pfs(int start, PU priority_queue) { // 优先级搜索框架 }};

    总结

    通过上述内容可以看出,图论涉及广泛的概念和技术,涵盖了图的定义、类型、路径、算法等多个方面。理解这些基本概念对于掌握图论中的高级内容和实际应用至关重要。

    转载地址:http://duir.baihongyu.com/

    你可能感兴趣的文章
    NT AUTHORITY\NETWORK SERVICE 权限问题
    查看>>
    NT symbols are incorrect, please fix symbols
    查看>>
    ntelliJ IDEA 报错:找不到包或者找不到符号
    查看>>
    NTFS文件权限管理实战
    查看>>
    ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
    查看>>
    ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
    查看>>
    ntp server 用法小结
    查看>>
    ntpdate 通过外网同步时间
    查看>>
    ntpdate同步配置文件调整详解
    查看>>
    NTPD使用/etc/ntp.conf配置时钟同步详解
    查看>>
    NTP及Chrony时间同步服务设置
    查看>>
    NTP服务器
    查看>>
    NTP配置
    查看>>
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>